Испания и Κº. Получено изображение черной дыры, центр нашей Галактики

0

ΚºРадиотелескоп IRAM с 30-метровой антенной, расположенный на юге Испании неподалеку от Гранады, принял активное участие в подготовке и осуществлении научного открытия.

elementy.ru / 12 мая в шести странах одновременно состоялись заранее анонсированные пресс-конференции участников международной астрономической коллаборации Event Horizon Telescope. На них был продемонстрирован «снимок» черной дыры Sgr A* в центре Млечного Пути, полученный новейшими методами радиоастрономии. Три года назад эта же коллаборация обнародовала портрет сверхмассивной черной дыры в галактике M87. Угловые размеры двух дыр близки, поскольку «наша» черная дыра примерно в 2000 раз ближе и в 1500–2000 раз легче (ее масса составляет примерно четыре миллиона солнечных масс). И хотя Sgr A* находится гораздо ближе, на получение ее изображения потребовалось гораздо больше времени. Основную сложность представляло быстрое вращение вещества вокруг нее, из-за которого картина окрестностей черной дыры постоянно менялась. Учет этих изменений потребовал колоссальных вычислительных усилий.

Международная коллаборация Event Horizon Telescope (EHT) была основана по инициативе нидерландских астрофизиков Хайно Фалька (Heino Falcke) и Серы Маркофф (Sera Markoff), их гарвардского коллеги Шеперда Дойлмана (Sheperd Doeleman) и других исследователей из различных стран. Ее учредили для сбора детальной радиоастрономической информации о сверхмассивных черных дырах, скрытых в центрах большинства галактик. За несколько лет эта команда значительно расширилась и сейчас насчитывает более трехсот участников из восьми десятков научных центров.

В апреле 2017 года участники коллаборации EHT произвели мониторинг пары компактных космических источников электромагнитного излучения, расположенных в ядрах двух сильно непохожих друг на друга галактик. Один из них, известный как Стрелец А* (Sgr A*), расположен в центре нашей спиральной Галактики, удаленном от Солнца на 27 тысяч световых лет. Все собранные к тому времени астрофизические данные говорили за то, что он представляет собой потоки высокотемпературной плазмы, вращающиеся вокруг черной дыры с массой в 3–4 миллиона солнечных масс и порождающие радиоволны посредством синхротронного излучения. Второй источник пребывает в ядре гигантской эллиптической галактики М87 из созвездия Девы, удаленной от Солнца на 53–55 миллионов световых лет. Аналогичные соображения позволяли предполагать, что там находится черная дыра с массой в несколько миллиардов масс Солнца, тоже окруженная облаком горячего ионизированнного газа.

Весной 2019 года члены коллаборации обнародовали результаты мониторинга радиопотока от галактики М87, которые полностью подтвердили изначальные соображения о его природе. На их основе ученые сконструировали прогремевшее на весь мир изображение черной дыры в его центре (см. Черная дыра галактики M87: портрет в интерьере, «Элементы», 14.04.2019). Обработка наблюдений дыры в центре нашей Галактики заняла куда больше времени, и поэтому ее итоги только сейчас стали достоянием гласности. Полностью они представлены в десяти статьях (шесть основных и четыре дополнительных), опубликованных в специальном выпуске журнала The Astrophysical Journal Letters.

Центр нашей Галактики скрыт от нас плотной завесой облаков межзвездной пыли, блокирующей видимый свет. Поэтому наблюдать за окрестностями Srg A* приходится в других диапазонах. На этой анимации, подготовленной специалистами ESO, показаны траектории звезд вблизи черной дыры. Положение звезд отслеживалось при помощи инфракрасной камеры NACO, установленной на VLT

Новые результаты, как и их предшественников, можно с полным основанием считать триумфальным достижением не только новейших методов радиоастрономических наблюдений и их компьютерного анализа, но и социальной и информационной организации крупномасштабных исследовательских проектов в области астрономии и астрофизики. Надо отметить, что их суть отнюдь не в демонстрации существования черных дыр, которое давно не подвергается сомнению. Члены коллаборации EHT оба раза получили именно то, что и намеревались получить с самого начала (вернее, то, что было предсказано на основе общей теорией относительности и теории динамики релятивистской плазмы в сильных гравитационных полях). Участники пресс-конференции в штаб-квартире Южной Европейской обсерватории, расположенной в мюнхенском пригороде Гархинге, особо отмечали, что если бы Альберту Эйнштейну довелось ознакомиться сих заключениями, он бы с радостью улыбался, поскольку они, как и раньше, полностью подтвердили его великую теорию тяготения.

Это обстоятельство, конечно, ни в коей мере не снижает значения данных, опубликованный сейчас и три года назад. Можно с уверенностью сказать, что в близком будущем реализация проекта EHT обещает великое множество ценнейших результатов — возможно, совершенно неожиданных. Простите за напоминание общеизвестной истины — новые эффективные исследовательские технологии всегда расширяют возможности научных исследований.

Теперь немного углубимся в физику. Черные дыры не подают никаких электромагнитных сигналов и выдают свое присутствие в космосе только собственным тяготением. Точнее, речь идет о сигналах, которые можно зарегистрировать с помощью радиотелескопов. Горизонт событий черной дыры в силу чисто квантовых эффектов должен служить источником излучения элементарных частиц, преимущественно фотонов, предсказанного в 1974 году Стивеном Хокингом и носящего его имя. Однако для черных дыр космических масштабов это излучение настолько слабо, что его нельзя детектировать не только современными, но и мыслимыми в обозримом будущем методами.

Сказанное относится только к черным дырам, окруженным пустотой космического вакуума. Однако многие дыры, расположенные в галактических ядрах, окружены кольцами горячей плазмы — так называемыми аккреционными дисками. В соответствии с законами электродинамики, такие диски генерируют мощное синхротронное излучение. Нередко оттуда выбрасываются релятивистские джеты — потоки заряженных частиц, движущиеся с субсветовой скоростью, которые служат еще одним источником фотонов.

Плазменное окружение внутригалактических черных дыр генерирует электромагнитные волны различных частот — от радио до жесткого рентгена. Суммарная мощность излучения дисков сверхмассивных дыр с самой интенсивной аккрецией доходит до 1048 эрг/сек. Для сравнения стоит отметить, что полная светимость звездного населения типичной галактики составляет 1044 эрг/сек. Поэтому сверхмассивные черные дыры можно исследовать как с помощью радиотелескопов, так и посредством инфракрасной, оптической и рентгеновской аппаратуры. Газовое окружение черных дыр с малой плотностью окружающего вещества светит на десять и более порядков слабее, однако тоже генерирует практически весь спектр электромагнитных волн за исключением гамма-лучей.

Интересно, что ожидаемый результат мониторинга радиоизлучения черных дыр, проведенного коллаборацией EHT, был давно известен. В 1979 году французский астрофизик Жан-Пьер Люмине (Jean-Pierre Luminet) показал, что для отдаленного наблюдателя такая дыра должна выглядеть как светящееся кольцо с асимметрично распределенной яркостью (J.-P. Luminet, 1979. Image of a spherical black hole with thin accretion disk). Оно сформировано из фотонов, которым удалось покинуть свои замкнутые орбиты вокруг горизонта событий черной дыры и уйти в окружающее пространство. Искривление световых лучей вблизи горизонта приводит к появлению внутри кольца более или менее сферического темного пятна — своего рода «тени» черной дыры. Именно такие картинки и видны на снимках, обнародованных только что и в 2019 году.

Эти изображения содержат важную информацию. Теория указывает, что радиус светящегося кольца в первую очередь зависит от массы черной дыры, что позволяет ее оценить с хорошей точностью: из-за эффектов ОТО получается, что радиус «тени» в 2,6 раза больше шварцшильдовского радиуса черной дыры (подробнее об этом см. в задаче Фотонная сфера и «тень» черной дыры). Именно это дважды проделали участники коллаборации EHT. В ходе реализации своего проекта они создали интегрированную сеть из восьми крупных радиообсерваторий, которая действует как исполинский радиотелескоп планетарного размера. Она включает две чилийские обсерватории, APEX и ALMA, пару их партнеров на Гавайских островах, SMA и JCMT, мексиканский 50-метровый радиотелескоп LMT, радиотелескоп IRAM с 30-метровой антенной, расположенный на юге Испании неподалеку от Гранады, субмиллиметровый радиотелескоп SMT на горе Грэм в американском штате Аризона и телескоп SPT на Южном полюсе. Они образовали гигантский радиоинтерферометр, который регистрировал электромагнитные волны длиной 1,3 миллиметра и обеспечивал угловое разрешение порядка 25 дуговых микросекунд. Этого оказалось достаточно как для реконструкции изображений тени черных дыр и их плазменного окружения, так и для определения их масс. Для обработки первичных данных объемом 3,5 петабайт применялись мощные вычислительные комплексы, включая суперкомпьютер немецкого Института радиоастрономии Макса Планка. Кроме того, участники проекта создали уникальную библиотеку компьютерных симуляций черных дыр и их окружения, которые активно использовались и постоянно сравнивались с результатами наблюдений.

Как я уже отметил, планетарный интерферометр коллаборации EHT в апреле 2017 года провел многочасовые наблюдения обеих черных дыр. При этом мониторинг черной дыры в центре Млечного Пути оказался куда более трудоемким, хотя она и расположена примерно в две тысячи раз ближе к Земле, чем дыра в галактике М87. Это объясняется различиями в динамике плазменных потоков в окрестностях этих дыр. Диаметр горизонта событий дыры в галактике М87 в полторы тысячи раз превышает диаметр горизонта нашей «домашней» дыры. Хотя и там, и там частицы плазмы движутся с субсветовыми скоростями, их периоды обращения вокруг дыры различаются примерно в той же пропорции. Для дыры в центре Млечного Пути они измеряются несколькими минутами, а для дыры в ядре М87 — сутками и даже неделями. Поэтому фотонные потоки, достигаюшие Земли от дыры в центре Галактики, за время наблюдений сильно варьировали по структуре и яркости, в то время как излучение от дыры в М87 оставалось достаточно стабильным. Из-за этого обработка данных из центра Галактики потребовала создания новых алгоритмов и компьютерных программ и заняла намного больше времени.

Рис. 2. Сравнение размеров черных дыр
Рис. 2. Сравнение размеров черных дыр, расположенных в центре галактики M87 и в центре Млечного Пути. Как видно, «наша» черная дыра вместе с активно излучающей в радиодиапазоне областью аккреционного диска целиком помещается внутрь орбиты Меркурия (большая полуось которой равна ~58 млн км). А черная дыра в M87 по размерам сопоставима с орбитой Плутона (большая полуось которой равна ~5,9 млрд км). Изображение с сайта eso.org

По данным 2019 года, масса дыры в ядре галактики М87 в 6,5±0,7 миллиардов раз превышает массу Солнца. Черная дыра в ядре Млечного Пути куда скромнее, ее масса не превышает четырех миллионов солнечных масс. Эти оценки полностью согласуются с оценками масс этих дыр, которые были ранее получены другими методами, на чем я еще остановлюсь в конце статьи.

Новые результаты дали возможность сравнить данные по фотонному окружению двух черных дыр с весьма различными массами, что позволит лучше понять тонкие детали движения плазменных струй в их окрестности. Результаты такого сравнения, в свою очередь, приблизят разработку общей теории аккреционных дисков сверхмассивных черных дыр в гравитационных полях различной силы.

Конечно, «портреты» всего лишь пары дыр — это не так уж много. Однако коллаборация EHT продолжает работать. В марте она осуществила новую серию наблюдений с участием еще трех телескопов — гренландского GLT, суперсовременной антенной решетки NOEMA во французских Альпах и радиотелескопа с двенадцатиметровой антенной из аризонской обсерватории Китт-Пик. Вероятно, в будущем к коллаборации подключатся и другие установки. В общем, всё только начинается.

Как я отметил, обе черные дыры были открыты довольно давно. Объект Стрелец A* плотно изучается уже свыше тридцати лет методами инфракрасной астрономии. Многолетнее наблюдение звездных орбит в его окрестности позволило убедительно доказать наличие там вращающейся черной дыры с гравитационным полем, соответствующим метрике Керра. Ученые также смогли определить ее массу, которую они оценили приблизительно в четыре миллиона солнечных масс. За это достижение немецкий астрофизик Райнхард Генцель и профессор Калифорнийского университета Андреа Гез получили Нобелевскую премию по физике 2020 года.

На наше счастье, эта дыра сейчас пребывает в спокойном состоянии. Полная мощность ее электромагнитного излучения, так называемая болометрическая светимость, во всех диапазонах не превышает 1036 эрг/сек. Это означает, что она в миллион раз уступает светимости дыры-миллиардника в галактике М87 и всего на два порядка превышает светимость Солнца. Находись такая дыра в другой галактике, коллаборации EHT вряд ли удалось бы ее обнаружить. Масса ее аккреционного диска тоже невелика, скорее всего не более одной сотой процента солнечной массы. Соответственно, масштаб годовой аккреции вещества диска на дыру скорее всего не превышает одной миллионной массы Солнца. Наконец, в отличие от дыры в галактике М87 она лишена джета.

Интересно, что дыра в нашей Галактике замолкла совсем недавно. Всего лишь шесть миллионов лет назад эта черная дыра перешла в довольно активную фазу. От ее тогдашней вспышки осталась ударная волна, которая сейчас распространяется через пространство Галактики со скоростью порядка 3 миллиона километров в час. Она достигнет окрестностей Солнца через 3 миллиона лет.

Наличие в ядре галактики М87 исполинской черной дыры — тоже не новость. Это показали результаты спектрального анализа излучения ионизированного кислорода в ее центре, который был выполнен еще в конце прошлого века. Они продемонстрировали сильное уширение спектральных линий его излучения, которое ясно показало, что в ядре имеется чрезвычайно компактный центр сильнейшего притяжения. Ученые тогда пришли к выводу, что таким центром может быть только черная дыра с массой не менее 3 миллиардов солнечных масс. Позднее, около 2010 года, астрономы пришли к заключению, что эта дыра тянет без малого на шесть с половиной миллиардов масс Солнца. Результаты коллаборации EHT полностью подтвердили и этот вывод.

Источники:
1) Материалы пресс-конференции ESO, посвященной «снимкам» черной дыры Sgr A*.
2) Серия статей The Event Horizon Telescope collaboration, First Sagittarius A* Event Horizon Telescope Results // The Astrophysical Journal Letters. 2022.

Алексей Левин

Оставить комментарий